2 research outputs found

    Variable-Based Calibration for Machine Learning Classifiers

    Full text link
    The deployment of machine learning classifiers in high-stakes domains requires well-calibrated confidence scores for model predictions. In this paper we introduce the notion of variable-based calibration to characterize calibration properties of a model with respect to a variable of interest, generalizing traditional score-based calibration and metrics such as expected calibration error (ECE). In particular, we find that models with near-perfect ECE can exhibit significant variable-based calibration error as a function of features of the data. We demonstrate this phenomenon both theoretically and in practice on multiple well-known datasets, and show that it can persist after the application of existing recalibration methods. To mitigate this issue, we propose strategies for detection, visualization, and quantification of variable-based calibration error. We then examine the limitations of current score-based recalibration methods and explore potential modifications. Finally, we discuss the implications of these findings, emphasizing that an understanding of calibration beyond simple aggregate measures is crucial for endeavors such as fairness and model interpretability

    Capturing Humans' Mental Models of AI: An Item Response Theory Approach

    Full text link
    Improving our understanding of how humans perceive AI teammates is an important foundation for our general understanding of human-AI teams. Extending relevant work from cognitive science, we propose a framework based on item response theory for modeling these perceptions. We apply this framework to real-world experiments, in which each participant works alongside another person or an AI agent in a question-answering setting, repeatedly assessing their teammate's performance. Using this experimental data, we demonstrate the use of our framework for testing research questions about people's perceptions of both AI agents and other people. We contrast mental models of AI teammates with those of human teammates as we characterize the dimensionality of these mental models, their development over time, and the influence of the participants' own self-perception. Our results indicate that people expect AI agents' performance to be significantly better on average than the performance of other humans, with less variation across different types of problems. We conclude with a discussion of the implications of these findings for human-AI interaction.Comment: FAccT 202
    corecore